


1

Design Evolution
Cabinet

The box went through a few iterations before the design was finalized. There was a thought
to have acrylic panels on the side that were able to be easily removed and to showcase the internals
of the system. We wanted the LED matrix set back slightly within the machine and an acrylic panel
over the top and in front of the monitor for protection as well. We did not have the time, know how,
or resources to implement this design however so the idea for that was scrapped. Other smaller
changes were the orientation of the USB attachments, an improved mount for the monitor, and how
the LED matrix was attached to the top of the cabinet. These all were modified from the original 3D
model for convenience or wire management.

LEDMatrix Circuit
There have been numerous deviations from our original design in relation to EE 491. One

design change came towards the end of last semester and was lightly touched in our final design
document. That being the LED matrix circuit. We originally wanted to capture the 80’s retro arcade
aesthetic and having a flashing display is the epitome of that. Time and research was dedicated into
finding what materials we would need and how we could make our own.

The original size of the matrix was 48x8. This would give us a large display with a nice
resolution as the intent was to display messages across the board. When installing the matrix into
the cabinet it would not fit as it was too long. The fix for this issue was to cut it down by 3 columns.
Next the issue with it was that it was not able to display certain letters. We believe the issue to be a
short circuit as letters like A and H are not able to be printed. This led us to change up the idea and
do some random effects to keep the flashy feel.

The driver circuitry behind the LED matrix went through several iterations. The original
intent was to make PCBs. This idea was scrapped as testing and soldering on per�oard took quite a
while. It was also in our best interest as the PCB would cost us extra money and there is always the
risk that the boards do not work. There was a lot of soldering and desoldering that took place as we
were trying to find the optimal position for the 74HC595 chips and other components that were
needed.

Power Supply Circuit
The original design called for a range of power requirements. These were projected to be a

3.3, 5, and 12 volt supply. This was built between the two semesters. This circuit worked for the
original test using a multimeter. it was able to supply all the voltages required. This was put aside
until the final constitution of the box. When we tried to power the speaker, we found a large
problem. With just the speaker attached, the 12 volt supply was burning up. With testing, we found
a range of problems. Both the voltage regulator and the wires used were not rated for the amperage
that was required. This would need a complete redesign, ordering parts, and testing time which
wasn't available. This circuit was replaced by a power strip in the final design. This circuit is shown
in Appendix II G.



2

On/Off circuit
The circuit below was designed to briefly interrupt the power supply to the Raspberry Pi.

After both the change to the power supply and the circuits unreliability to turn the Raspberry Pi, it
was replaced and incorporated with the temperature sensor. After testing, the Raspberry Pi seems to
have a power regulator that can keep the Pi on if power is briefly interrupted. This would stop the Pi
from turning off, and the button became unreliable. The change was to let the microcontroller that
was reading the temperature sensor also read the input of the button press. The microcontroller
would then output a HIGH value to a relay which broke the circuit for the power strip. This circuit
is shown in Appendix II H.

Controller Mapping
Deviations had to be made when there was no real viable way to receive controller inputs

with the java version the Raspberry Pi was running. Had to receive and map the game controller
inputs on an operating system level and make an interface that could communicate with the
operating system program that would be running in the background to accurately update the
mapping of inputs to the user's custom liking.

Icon Size
Game buttons are accompanied by an icon that describes them on the game select screen,

to keep the design of the game select screen slick these icons should be 64x64 pixels. The original
plan to enforce these size restrictions was to disallow the user from choosing an incorrectly sized
icon when adding a game to the USB. It quickly became clear that forcing the user to resize their
images would be too annoying to deal with. Instead we implemented a system that allows any
image to be used as an icon and said image will be automatically resized when opening the select
game screen on the PI.

Focus on the .jar file format
Our original assumption was that running games of many different types on the PI would

be a simple task. This could not have been farther from the truth, writing the planned code that
would run different types of game on the Pi would have been a simple task but the computing
resources on the PI were much more restrictive than anticipated so it's unlikely that code would
have worked. In order to simplify implementation we decided to focus more heavily on the jar
format which worked natively on the PI. Given more time figuring out how to get more game types
working would be a logical next step.

Minimal graphics
One feature we planned to implement was different graphical “themes” for the UI allowing

the user to customize the look of the UI. We chose to not go forward with this idea because of the
long load time associated with loading new graphics on the PI. After changing the theme it would
take quite a while for the new graphics to load. Especially since you have already loaded all the
screens of the original theme. There are definitely ways to get around this but we decided instead
to just focus on making the theme we have look the best it can.



3

Functional and Nonfunctional Requirements
Functional:

● Users have the ability to play an assortment of retro games.
● Users have the ability to use any controller they choose.
● Users have the ability to upload any game that is a runnable jar file.
● Users have the ability to control the volume.

NonFunctional:

● Game will boot up in no longer than 5 secs
● Fan will kick on to cool the CPU to prevent throttling.
● I/O Delay will be kept to a minimum(not noticeable)

Relevant Standards
For wire routing and standard powers, we will mimic the JAMMA standard:

This is a set of basic standards for easy repairs for arcade cabinets. This allowed for old arcade
cabinets to be repaired and reused by using standard parts and standard voltages for components

OSHA standards: Safety and preventive planning

ASAP*(Appliance standards awareness project) (https://appliance-standards.org/national)

*While we cant meet all standard under this section, we took inspiration to implement power
saving (while not in use, save power)

Engineering Constraints
There were a collection of constraints and requirements we were to follow when creating

our project.

Physical:

We were given a size constraint of a 2ft cube

Able to be portable and light enough to be carried

Wanted to have a retro aesthetic

User:

The user should be able to control audio volume

control scheme for the games and create custom controls

https://appliance-standards.org/national


4

have responsive controls (10ms input delay)

Software:

Clean UI

Able to run .jar files

Lag free gameplay

Able to read inputs from a controller

Material:

All devices contained must stay below 85 Celsius

Cabinet made out of a hardwood

Concerns
There are many concerns that arise when trying to create a functional device. The first

concern in the creation of our project was to figure out which coding language would be used to
construct the UI as we were using the Raspberry Pi. Our group knew Java well and the Pi was able
to support that.

Another concern present was wire management and making sure each subsystem was
working properly. The ability of having our wires neat and organized leads to each system being
powered properly and secured to their respective locations. A power strip was added with a surge
protector as well for added protection.

Stemming from the issues with messy cables, the issue of hot components or having them
overheat is an ever present issue. This could lead to a fire and the total destruction of a subsystem
or at worst, the cabinet as a whole. To prevent this issue and to cool our circuits to make sure they
are running at peak efficiency, an automatic fan will kick on when the ambient temperature reaches
a certain point.

There are a whole set of issues that could happen with the software of our system. Due to
research and independent testing, the Raspberry Pi was able to run the needed software that was
chosen for this project. Running into bugs and having the software crash is another issue that needs
to be addressed. The software team did extensive testing to fix the issues within their code.

There were other issues that were quite low with the likelihood of them happening. We had
ideas to prevent the breaking of certain components, like the monitor, by placing an acrylic panel
over but this was never implemented. Another issue, that is serious but not so applicable to this
scenario, would be the insertion of a malicious usb into the exposed ports in which the user can
upload their games to the system. The fix for this would be a user set password on the ports. This
was also never implemented.



5

LikeliHood Severity Mitigation
severity after
mitigation

Overheat/fire moderate/low major Apply external cooling low

Raspberry pi not
able to run software moderate/low moderate

have other options to run
software low

Power being
disconnected/surge low low

ensure wire and cords
are properly stored neatly
and surge protector is in
place low

software crashing high/moderate low

extensive testing and
allow a reboot option for
user low

Malicious USB
upload low major

Set password to access
and upload files (not
implemented) low

Breaking of
components low major

Acrylic panels (not
implemented), proper
wiring and correct power
delivery low

Implementation Details
Software:

The Raspberry Pi is running its default Pi operating system (OS) which is a linux- like OS.
The Graphical user interface (GUI) is all written in Java Swing. The mapping of controllers utilizes a
program called Qjoypad which is a program written in C. All controller inputs are mapped to
keyboard strokes. A Swing GUI is implemented to interface with the Qjoypad layout files that
allows for the user to easily rewrite the layout file in order to custom map their own controller
inputs. Uploading games onto the Pi was made through a java swing application that allows the
user to select what files,text, and images they would like to upload to the cabinet and then proceeds
to build a configuration file and move the selected files to the USB drive. The usb drive is then
inserted into the cabinet and the game is automatically loaded to the select game screen after the
configuration file is read. The Diagram for the software systems can be referenced in Appendix II F.



6

Hardware:

The hardware team sat down and ironed out the subsystems that would need to be
implemented within our design. In Appendix II E the block diagram shows how the circuits were
connected. The purple rectangles are outputs and the orange rectangles are user inputs. The red
triangle is an environmental input, which would tell the arduino the temperature in the cabinet.
With power supplied, the electrical engineers were able to build the rest of the required systems.

Power Circuit

The first system created was the power circuit which would pull from a wall socket and
power the Pi, arduino, speaker, monitor and connected systems. The final design ended up being a
simple latch circuit, controlled by an arduino, wired to a 25 cent arcade style power button.

LEDmatrix

We created a 45x8 led matrix. The anodes of the leds were all soldered together to create
the columns of the matrix. The cathodes were then soldering together to create the rows. This is
shown in Appendix II, D. To drive the leds we then needed to create the circuity. This consisted of
an arduino and 7, 74HC595 pin extenders.There were 6 pin extenders for the rows. They were in
daisy chain configuration as shown in Appendix II, B. A resistor was used to limit the current into
the leds. The first 74HC595 in the series had pin 11 connected to digital output 2 of the arduino,
pin 12 of 74HC595 was connected to digital output 3. Finally pin 14 of the 74HC595 was
connected to digital pin 4 of the arduino. We used 1 pin extender for the 8 rows, as it has 8 outputs.
A resistor was used to limit the current going into the leds as well. Pins 11, 12, and 14 were wired to
digital pins 5, 6, and 7 respectively. The diagram for the row driver can be found in Appendix II C.
With some arduino code you are able to print various messages or do random flashy effects across
the board.

On/Off circuit

Like a modern computer, we wanted to add a stylized power button that the user will press
and hold for a brief moment before the system turns on. We decided to go with a button that looks
like a coin slot, keeping true to the style of a retro arcade cabinet. This also can help older users
understand the implication of the button. When you play an arcade game, you usually insert a
quarter. This understanding will let new users know where to start to turn on the device. This
button gets fed into an arduino. This arduino continuously checks the input of the button. If the
button does get pressed, it has a delay for a second, then it will check for the button press again.
This is implemented in the station where you just slightly bump into the button but you don't want
it to turn on. If the button is pressed for both checks, it will output a HIGH value to a relay. This
relay breaks the power from the power strip. Once the relay gets the HIGH value from the arduino,
it closes the circuit and lets the power strip power all the other devices.



7

The button works in the same way when the user would like to turn the device off. It repeats the
same double check for the button, and if both are met it will supply a LOW to the relay. This will
break the circuit and turn off all the devices.

Temperature sensor and fan

The same arduino that controls the power button also controls the temperature sensor
circuit. This implements a DS1822 temperature sensor, connected to an analog input on the
arduino. When over a set temperature (65°F) the arduino will output a HIGH to a relay. This relay
allows a 12 volt supply to power a fan. When the temperature drops below the set temperature, it
will supply a LOW to the relay and break the circuit.

Testing

Unit testing - All portions were individually unit tested by the individual that created the
portion, then an outsider who did not work on the unit also tested it to gain outside perspective
and ensure units should be functioning as intended. Most hardware components were simulated
using softwares such as TinkerCad and LTSpice. Then Breadboards were used to test the
components for extra verification. After creation of PCBs or circuits they were then tested again
before connecting with other systems.

Integration testing- A two week period was provided for all integration testing as we
agreed that integration testing is where most bugs, faults, and failures come up. We began by
testing pairs of units to ensure each pair worked properly together, then slowly tested larger groups
of units together.

Regression testing - As faults began to arise we noticed we had to take out some features
provided by some of the units (most notably .EXE files). The units that were changed had to be
retested to ensure the changes did not cause any other faults or problems in other locations.



8

Appendix I - Operation Manual

Power and Start-up

-Two power cables to plug into an outlet (one for the arduino controlling the On/Off state, one for

the power strip that everything else is connected to)

-Once powered, push in 25c coin slot button for a half second to power on the cabinet

-The system will boot up and automatically bring up the home screen UI

-Push the 25c coin slot button to power the cabinet off

Adjust Volume

-The speaker is located directly above the display

-Adjust the dial to where the volume is to the users preferred level

Default and Custom Controls

-The arcade cabinet has a set of default controls if you choose to use them, but there is a method

to set custom controls to then map any controls you wish

-Navigate into settings

-Select “Customize Controls” to set the controls that you want to use to play the games

-Follow the directions on screen and input each key bind that you want to be mapped to either the

joystick and buttons or a third party controller

-After inputting the keystrokes, make sure that the “Activate Custom Controls” option is selected

-ready to play with the new customized controls

Adding New Games to the Cabinet

-Download a game of your choice and images to use for the background and icon (images are

optional).

-Run the .jar application on the USB drive and in the GUI select the files you just downloaded and

enter any remaining information.

-Click save. If the program detects any issues, it will inform you.



9

-Insert the drive into a USB port on the lower, front of the cabinet.

-The arcade application will read the drive and insert a new instance of a game to the game list

screen.

-Once selected, you can play the game that you have uploaded.

Playing Games

-Once at the main menu, select the “Play Games” options

-A list of games will pop up and display icons and descriptions associated with the specific game

-Scroll and select which game you want to play

-Once selected, a pop up screen will appear, running the game you selected.

-Have fun!



10

Appendix II - Alternative Versions
A. Software:
Original idea to receive controller inputs was to use a java library called JInput. This library (along
with most other game controller inputs were depreciated and would not work with the version of
java running on the PI. Had to change the idea to receive the controller inputs on an operating
system level and made a java interface that was able to write to the layout file that the operating
system program utilized.

Original idea was to have the ability to run windows .exe files to run games on the Raspberry Pi.
This idea had to be changed because the Pis operating system is linux based and was very difficult
to run windows programs. Wine was not a viable alternative for running the .exe files as it only
supports x86 architectures and the Pi uses ARM.

B. Column Driver Circuit



11

C. Row Driver Circuit



12

D. LEDMatrix Circuit



13

E. Hardware Diagram



14

F. Software Diagram

G. Power Supply Circuit



15

H. On/Off Circuit



16

Appendix III - Other Considerations

Maybe put skills that were needed or classes that helped? Maybe something you
learned.

A. Skills needed
● PCB / Circuit Design
● Soldering
● Carpentry
● 3D CAD Design
● Coding in various languages for various applications

B. Applicable Courses from Iowa State University Curriculum

EE CprE SE/COMS Others

303 281 227 ENGL 314

333 288 228

230 309

319

317


